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The flow set up in an oblate cavity of a precessing rigid body is examined under 
the assumptions that the ellipticity of the spheroidal boundary of the fluid is 
large compared with Qn/w and that the boundary-layer thickness is small com- 
pared with the deviations of the boundary from sphericity (o is the angular 
velocity of the rigid body about the axis of symmetry, Q is the angular velocity 
with which this axis precesses). 

The motion of the fluid is found by considering an initial-value problem in 
which the axis of rotation of the spheroid is impulsively moved at  a time t = 0; 
before that time this axis is supposed to be fixed in space, the fluid and envelope 
turning about it as a solid body. The solution is divided into a steady motion and 
transients, and, by evaluating the effects of the viscous boundary layer, the 
transients are shown to decay with time. The steady motion which remains 
consists of a primary rigid-body rotation with the envelope, superimposed on 
which is a circulation with constant vorticity in planes perpendicular to 
w x (o x Q), the streamlines being similar and similarly situated ellipses. 

The possible effects of the luni-solar precession on the fluid motions in the 
Earth’s core are discussed. 

1. Introduction 
Some years ago, Bondi & Lyttleton (1953) examined the motion of a liquid in 

a spherical cavity of a rigid body which was rotating with an angular velocity o 
about an axis through the centre of the sphere when this axis, in turn, was 
precessing with angular velocity Q (Q < w) about an axis fixed in space. The aim 
of their investigation was to throw some light on the effect of the precession of 
the Earth on the motion of the liquid core. The analytical approach used by 
Bondi & Lyttleton was to suppose that the fluid is Newtonian and practically 
inviscid. Then, in the first approximation, viscosity was neglected, and it was 
hoped to correct for viscosity by a thin boundary layer near the surface of the 
cavity. Unfortunately, on attempting to solve the steady inviscid equations, 
they arrived at a definite contradiction which strongly suggested to them that 
no steady-state motion of a permanent character is possible for the fluid. 
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The spherical cavity presents a special difficulty in the theory of rotating fluids 
because without viscosity no motion can be communicated to the fluid by a 
rotation of the boundary. The angular velocity acquired by the fluid, even if 
the sphere is not precessing, is due entirely to the generation of vorticity in the 
boundary layer at the surface of the cavity and one might expect it to take a time 
O(a2/v) ,  where a is the radius of the cavity and v the kinematic viscosity, for the 
motion of the fluid and sphere to rotate together as a rigid body. Let us suppose 
this time has passed, that the precessing motion is set up at t = 0, and that sub- 
sequently the fluid may be regarded as inviscid. Then while the solid body 
precesses the fluid rotates about a fixed axis, being unaffected by the motion of 
its envelope. The motion of the fluid is actually steady but relative to the en- 
velope it appears to be unsteady, its axis of rotation precessing with angular 
velocity - S2 and, when fit  is small, this means that the velocity perturbations 
are proportional to fit. Thus the contradiction obtained by Bondi & Lyttleton 
does not necessarily mean that the motion of the fluid is not ultimately steady. 
For a real fluid, one might expect that the motion described above would occur 
if Qa2/v B 1, and if, on the other hand, QZa2/v < 1, the motion of the fluid and 
envelope would be virtually a rigid body precession. 

This discussion strongly supports their view that the determination of the 
motion is likely to prove a problem of great difficulty, and consequently we 
thought it desirable to begin our attack by studying the related problem of the 
oblate spheroidal envelope which includes the sphere as a special case but proves 
easier because the motion of the boundary of the cavity must communicate 
itself in part to the fluid. This problem is not without interest in the geophysical 
context with which Bondi & Lyttleton were concerned because, although one 
can say that the core of the Earth is nearly a sphere in that 

(.2-b2)/a2 < 1, 

where a and b are the semi-major and minor axes of the core, one cannot be sure 
of the values of 

which, with R, = wa2/v ( B  1)) control the motion of the fluid in the core relative 
to the rigid-body rotation. If R, = 0,  the motion is critically dependent on R, 
while if R, is large the motion is independent of R, except, possibly, if R,R2 5 1. 
Our investigation here is based on the assumptions that R, B 1, R, R, B 1 ; it is 
hoped to explore other limiting situations in a. later paper. These assumptions 
are not unreasonable in the geophysical context since, for the surface of the 
Earth, (az- b2)/2a2 2: 1/29?, and the value of this parameter for the core is not 
likely to be many orders of magnitude less. Further, w / Q  2: lo', and v is almost 
certainly much less than 108 cm2/sec. We shall consider these geophysical 
questions further in 5 7. 

Even for an oblate spheroidal cavity containing almost inviscid fluid the deter- 
mination of the flow has some unusual features. Thus the governing equations 
for an inviscid fluid are hyperbolic while the boundary condition is a relation 
between the function and its normal derivative. Such a boundary condition is 
appropriate to an elliptic differential equation and there are no corresponding 

R, = (a2- b2)  wlC2a2, R,  = fia2/v, 
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existence and uniqueness theorems for hyperbolic equations. In  fact one can 
construct examples of non-existence and non-uniqueness as follows. 

Suppose that the governing equation is 

and that (a )  4 = 0 on the circle x2 + y2 = 1, or (b)  4 = 0 on three sides of the 
square 1x1 6 1,  IyI < 1 and 4 = 1 on the fourth side. One solution of (a )  is 

4 = A(x2+ y2- 1) 

inside the circle, where A is arbitrary. This solution can be added to any other, 
so that there is no unique solution of (1 .1)  in this case. Again, every solution of 
( 1.1) which vanishes on three sides of a square must vanish on the fourth side so 
that the solution of problem ( b )  cannot exist. 

Fortunately in the present problem there is a simple physical explanation of 
these phenomena. The non-uniqueness is associated with the existence of free 
oscillatory motions of the fluid in which the boundary remains fixed and the 
non-existence is associated with the resonance which can occur when the 
boundary is made to oscillate with the same period as that of one of the free 
oscillations of the fluid. 

The difficulty about the inappropriate type of boundary condition is removed 
by considering motions which start from a position of relative rest. We suppose 
that the fluid and envelope are initially rotating as if solid with angular velocity 
w and that a t  time tf= 0 the envelope is set precessing with angular velocity SZ. 
The equations governing the induced motion of the fluid are unsteady but the 
time dependence is removed on applying a Laplace transformation with para- 
meter s and the equation is reduced to a single one of Laplace’s form apart from 
a scaling factor which is a function of s. A general solution can be written down 
and, on inversion, the history of the motion can be traced. From an examination 
of the solution at large times we can relate the non-uniqueness to free oscillations 
set up by the initial motion and the non-existence to resonance. 

For a spheroid the actual inviscid solution is straightforward being effectively 
given by Poincare (1910); the difficulty found by Bondi & Lyttleton for a = b 
is seen to be a resonance and explicable on the lines stated in physical terms a t  
the beginning of this section. 

From a geophysical standpoint an argument based on an initial motion is 
incomplete without considering the effect of dissipation which on the geological 
time scale might be expected to have a serious effect on the solution. In  the 
inviscid solution predicted for a spheroid the velocity components are linear 
functions of position so that apparently there is no dissipation in the interior, 
it  being confined to the boundary layer which must arise through violation of 
the no-slip condition. This is investigated in $4. The inviscid motion outside 
consists of two parts : (i) dependent on the azimuth angle 8 and due to the steady 
motion of the boundary, (ii) independent of 8 and due to the angular velocity 
which the boundary acquired initially but failed to communicate immediately 
to the fluid. The boundary layer associated with (i) was studied by Bondi & 
Lyttleton but we repeat their investigation here since we are including time as a 

1-2 
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parameter. It develops a singularity on certain circles of latitude as s approaches 
any value on the imaginary axis between - 3i and i. The boundary layer associ- 
ated with (ii) has also been studied earlier by Proudman (1956) and Stewartson 
(1957), and it develops singularities as s approaches any value on the imaginary 
axis between 2i. 

Bondi & Lyttleton (1953) noticed that the normal velocity on the critical 
circle become infinite in the limit and suggested that the flow near it was unstable 
leading to turbulence here and elsewhere. Although one cannot be sure without 
carrying out an actual experiment, more recent investigations do not support 
this view. The singularity on a critical line is a singularity in the boundary-layer 
sense, i.e. if v, is the normal velocity just outside the boundary layer, the equa- 
tions imply that v, = O ( d )  almost everywhere and on approaching the critical 
line v -b ,  4 GO. This does not necessarily mean that v, -+ co and indeed, in a 
related problem (Roberts & Stewartson 1963), a more detailed investigation of 
the flow properties near the critical line implied v, = O ( d )  which is still small in 
the limit u -+ 0. Further, a detailed solution of a problem related to (ii) by 
Stewartson (1957) elucidates the role of the critical circles as the origin of shear 
layers which penetrate into the fluid, transporting fluid from one part of the 
boundary to another via the interior and also adjusting the angular velocity of 
the main body of fluid when required. Free shear layers are certainly notoriously 
prone to instability; however, after Proudman ( 1956) had postulated their 
existence in a discussion of the flow between two concentric spheres, experi- 
ments carried out by Fultz & Moore (1962) to test his conclusions did not reveal 
any serious instability. In  fact, in the case when the outer sphere was rotated 
more rapidly than the inner sphere, a shear layer of the predicted structure 
was observed. It was noted however that, when the inner sphere was rotated 
the faster, the shear layer was much broader and more diffusive due, it 
appeared, to the formation of a street of line vortices. Rut, even in this case, 
the main characteristics of the flow far from the shear layer were not greatly 
affected. 

In 5s 5 and 6 the (tertiary) modification to the secondary flow induced by these 
boundary layers is discussed with particular reference to the oscillations produced 
by the initial motion of the envelope. It is shown that, of the motions dependent 
on 8, only the steady motion survives as t -+ 00. The effect of the boundary layer 
independent of 8 is to lead to a breakdown in the tertiary flow as t -+ a, and it is 
argued that this must mean that, relative to the boundary, the motion in- 
dependent of 8 must die out as t -+ co due to the communication of vorticity to 
the fluid via the boundary layer. 

Since the steady solution dependent on 8 is solely determined by the residue 
of the pole of the Laplace transform of the velocity at s = 0 ,  it is independent of 
the initial condition assumed. Consequently the motion which finally develops 
as a result of the joint action of the moving boundary and dissipation is the same 
whatever the initial condition assumed, and the non-uniqueness found when the 
steady problem is considered is seen to be illusory, i.e. any other solutions of the 
inviscid problem would undergo slow changes through the action of dissipation, 
ultimately taking on the form described above. 
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2. Equations of unsteady motion 
We consider a mass of incompressible fluid which occupies the whole of a rigid 

envelope whose internal boundary, So, is a surface of revolution with axis of 
symmetry LB. Initially the fluid and the envelope are rotating about the axis 
with angular velocity o which is an absolute constant. At time t = 0,  the axis 
LB is set rotating with a small uniform angular velocity 51 about an axis Ls fixed 
in space which intersects L, a t  a point 0, and which is inclined a t  an angle a to it. 
For definiteness, we shall suppose that the perturbed motion is started im- 
pulsively so that S2 is also an absolute constant. We wish to find the subsequent 
motion of the fluid. 

Consider a reference frame, 9, rotating with angular velocity S2, relative to 
which LB and L, are stationary, and let the velocity of the fluid relative to 9 be 

w = u + o x r .  (2.1) 

At t = 0 -  , u = 0, and a t  t = O +  , u + 0 in virtue of the impulsive motion of X,, 
but it will be determined by the initial motion of So. The actual velocity, v, of the 
fluid, relative to axes fixed in space and instantaneously coinciding with 9, is 

v = u + w x r + Q  x r. 12.2) 

We know that, at t = 0 + , u + 51 x r is irrotational and uniquely determined by 
the motion of X,, and hence is also known at t = 0 + . The equations of motion 
relative to 9 are 

&/at + 51 x v + (w . grad) v = - grad ( W + p / p )  + vV2v, (3.3) 
divv = 0, (2.4) 

where p is the pressure, p the density, v the kinematic viscosity, and W the 
potential per unit mass of the external forces, supposed conservative, which act 
on the fluid. We now express (2.3) in terms of u,  obtaining 

au/at + 2 ( o  +a) x u - (u + o x r) x curlu 

= -grad [W + ( p / p )  - ${(w +S2) x rI2+ u .  (o x r) + $u2] + vV2u + r x (S2 x o), 

whence, on neglecting squares and products of u and 51, we find 

where 
au/at + 2 o  x u- (o x r) x curlu = -wgrad V’+ vV2u- 2(51.r) o, 

wV’ = W + (p /p )  + $v2- (w x r)2+ ( 0 . r )  (51 .r)-  Z ( 5 1 . 0 )  r2. 

(2.5) 

(2.6) 

This equation differs from that given by Bondi & Lyttleton (1953), viz. 

where 
[au/at]+2wxu-((oxr)xcurlu = -ogradV+vV2u-(51.r)o,  (2.7) 

wV = W + ( p / p )  + 4v2- (o x r ) 2 +  2(w.r)  (51.r) --$(Q.o) r2. 

The first term in (2.7) in brackets was omitted by Bondi & Lyttleton because 
they assumed that the motion is steady. Although both V and the forcing term 
in (2.7) are incorrect, in the present problem only the absence of the factor 2 in 
the forcing term is of significance. We shall show ( Q  3) that this factor is crucial 
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for obtaining a consistent solution of the problem when So is a sphere. The 
equation of continuity (2.4) is equivalent to 

divu = 0. (2.8) 

Now choose a system of cylindrical polar co-ordinates ( r ,  8, z )  in 9 with L, 
as the z-axis, r measuring the distance of a typical point P(r) from LB, and 6 
being the angle between the plane defined by P and LB and the plane defined 
by L, and L,. Then 

(a. r) o = (0, 0, - Qwz cos a - Qwr sin a cos 8) ,  (2.9) 

where Q = - IS21 is the (retrograde) angular velocity of precession. 
To begin with, neglect viscosity, and denote the velocity by uo with com- 

ponents (uw, uoB, uoz) respectively along the directions of r ,  8 and z increasing; 
(2.5) and (2.8) are then equivalent to 

(2.10) 

l a  1 aUos auoa 
r ar r ae a Z  
--(ruoT)+--+- = 0 ,  

where V” = V’ - Qz2 cos a - ruoB. 

The boundary conditions require that the normal component of the fluid velocity 
is zero on So, and also that, at t = 0 + , u + S2 x r is irrotational with velocity 
potential $i (say). 

In order to solve (2.10) it  is convenient to take the Laplace transform of the 
dependent variables with respect to time denoting the result by an asterisk, e.g. 

u&(r, 8, z, s) = e-ustu0,(r, 8, Z, t )  dt. sum 
The governing equations then reduce to 

(2.11) 

(2.12) 

where the suffix i denotes initial conditions. Since, at t = 0 + ,  u + Q x  r is 
derivable from the potential q5$, equations (2.12) may be simplified, on writing 

V* = V”* - w1$$ + Qo-lrz sin a sin 8, (2.13) 
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\ 

iav* R 
r ae o 

av* ZIR 

+ - r cos a, 

sin a(cos O+s sin e), 

to 

, (2.14) 

(2.15) 

(2.16) 

where Tior, Zoo, Zo2, and V are independent of 0. On substituting into (2.14) 
and (2.15), we obtain 

- 
Uor = - 

- i 
Uoe = - 

(s + i > 2  + 4 

(s + i)2+ 4 

J 

- 2iIRsina 1 a V  
?LOB = - y - - -  

U S  s+i  aZ 
where satisfies 

= 0. 

I f  So is given by f ( r ,  z )  = 1, the boundary condition to be satisfied is 

- af - af 
aZ u -+uo2- = 0 at f = 1. 

(2.17) 

(2.18) 

(2.19) 

3. The secondary inviscid flow for a spheroid 
The problem posed by equations (2.17) to (2.19) can be reduced to a solution 

of Laplace’s equation on writing [(s  + i)2 + 4]/(s + i)2 = t2, and replacing z by [z .  
We can expect, therefore, that it  can always be solved for the boundary condition 
(2.19), which is equivalent to a linear relation between 7, its normal derivative, 
and possibly also its tangential derivative. Having obtained the solution, the 
ultimate flow may be found by letting s -+ 0, and taking note of the poles and 
branch points in the solution in the half plane 9 ( s )  > 0. 

In this paper we are particularly concerned with the properties of the solution 
when the envelope So is the oblate spheroid 
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of which Bondi & Lyttleton considered the special case a = b. For the boundary 
(3.1), (2.19) becomes 

r -  2 -  
, z U o r + p o z  = 0,  

and the appropriate solution of (2.18) is found by writing 

7 = Arz, 

where A is independent of r and z .  Substituting into (2.17) we have 

- Az - iAz - iA 2iQrsina 
Uor = -___ u,oz = -__- UOB = -__ 

(s - i) ' (S-i ) '  ( S f i )  ws 

Hence, from (3.2), 
2iQa2sina(9+ 1) 

os[a2(s - i) + b2(s + i)] ' A = - -  

Inverting the solution with respect to s, and using (2.16), we have 

2Qza2 sin a 
2a2 sin (0 + okt)] , Uor = 7 z 2 -  

2a2 cos(O+wkt) 
2SLza2 sin a 

u o B =  a2-b2 

sin (0 + okt)] , a2 2a2 + b2 u o z  = - T'jT- sine- ~ 

2Qrb2 sin a [ 
where k = (a2-b2)/(a2+b2).  

According to (3.6) to (3.8), the secondary motion of the fluid consists of two 
parts: one is essentially due to the initial motion of the boundaries; the other is 
an ultimately steady motion. The first part can itself be divided into two com- 
ponents. One is a rigid body rotation of angular velocity SL cos a about L, which 
the rotation of the boundary failed to communicate to the fluid. The other is a 
free oscillation of the fluid. The steady part of the motion consists of the rigid 
body rotation o (cf. equation (2.1)), and a circulation (given by the terms in 
sine, cos 6' and sin 0 in (3.6), (3.7) and (3.8), respectively) in planes perpendicular 
to L, the streamlines being similar and similarly situated ellipses. The vorticity of 
this circulation is constant and equal to - 2Q sin a(a2 + b2) / (a2  - b2). We shall 
show below that, if the fluid has a small viscosity, the effect of viscous dissipation 
in the boundary layer is to damp out all motions except the rigid body rotation 
and the circulation in planes perpendicular to L,. Since the choice of initial 
conditions affects the remaining terms only, i t  follows that the ultimate motion of 
the fluid is unique and that the effect of a small viscosity is to convert an im- 
properly posed mathematical problem into a properly posed one. 

In  the case of a sphere a = b, the relevant periods of free oscillation of the 
fluid are infinite, so that a resonance develops and 

urn = - Qz sin a(sin 8 + wt cos O), 
uoB = Qz sin ~ ( C O S  8 + wt sin 0) + SZr cos a, 

uOa = Q z ~  sin a(sin 8 + wt cos O), 
(3.9) 
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or, in vector notation, 
u = -S2xr r t (S2xx)x r .  (3.10) 

The physical interpretation of this result is that, as one expects, the motion of 
a spherical boundary exerts no influence on the motion of the fluid and hence, 
relative to the frame 9, the axis of rotation of the fluid rotates with angular 
velocity - S2 about L,. Consequently, after time t (Qt < l), the fluid rotates 
about an axis making an angle 

with L,, and this is indicated by (3.10). It is noted that, on substituting (3.10) 
into (2.7), the equations of motion are satisfied identically, and so any change in 
the motion of the fluid must be initiated through a boundary layer arising from 
the non-satisfaction of the requirement that u = 0 on the boundary So. Had the 
equation (2.7), required by Bondi & Lyttleton, been used, t would be replaced 
by i t  in (3.10), and the new formula for u would not be consistent with this 
physical argument. 

P x  4/14, 

4. The boundary layer 
The inviscid solution obtained in the previous section satisfies not only the 

inviscid equations but also the viscous equations (2.5). Viscosity therefore 
manifests itself only through the fact that this solution does not satisfy the 
viscous boundary condition u = 0 on the spheroidal envelope So, and leads to 
a boundary layer whose thickness we can anticipate to be O ( d )  if v is small 
where the adjustments in the tangential components of velocity are made. We 
shall calculate this boundary layer in the present section and its effect on the 
inviseid flow in the interior will be discussed in the following sections. 

Let us write 
u = uo + u,, (4.1) 

where u is the actual velocity of the fluid at  any point, uo is the velocity if 1’ = 0,  
and u1 is the correction due to viscosity. Then, to order 113, u1 is the contribution 
from the boundary layer to u. Introduce spheroidal polar co-ordinates (A,, p,, O ) ,  
where A, and p, are defined by 

r = (A:+ c2)+ (1 -p:)*, x = Alpu,, (4.2) 

c2 = a2- b2 and the spheroid So is given by A, = b. Then, using (3.6) to (3.8), we 
see that the boundary condition u = 0 requires that, at A, = b, 

\ Ulh,  = 0,  

2Qab sin a [ 
a2 2U2 + b2 sine- ~ u l P i  = a2 - b2 I 

(4.3) 

cos(6+okt) pl -Qtacosa( l -p~)~.  1 2Qa2b sin a [ 
a2 + b2 

2a2 
- - case- __ ulo = - a2 - b2 

Beyond the boundary layer, when (b  - A,) v* is large and positive, u, = o( 1); we 
shall then be particularly interested in ulh which is O ( d )  and, unlike the other 
components of velocity, is not exponentially small. Consequently it engenders 
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a tertiary flow though the interior of So. From the boundary condition (4.3) 
the flow in the boundary layer may be divided into two parts one of which (u~) 
is dependent on 8, and one (us) which is independent of 8. We consider the part 
dependent on 8 first. 

Write the Laplace transform of u2 with respect to wt as 

9(ii,eie), (4.4) 

and in the boundary layer make the conventional assumption that the operator 
i3/aA, = O(v-4) while a/ap, and a/a8 are O( 1). Then as is usual with Ekman flows, 
in the governing equations 8 and ,ul may be taken constant and A, may be re- 
placed by b except when it appears in a/aA,. The governing equations reduce to 

and the boundary conditions to 

at A, = b.  Also aZp, and U2, -+ 0 as (b  - A,) vi -+ 00. 

Integrating (4.5), (4.6) we have 

Qabi sin a(s + i) 
uzYl  = ws[s(a2 + b2)  - i(u2- b2)] 

where 

and the signs of the square root of the expression for S, and S2 are decided by 
requiring that, when s is large, real and positive, 6, and S2 are both positive. The 
value of uZh1 now follows by the direct integration of (4.7) so that all properties 
of the boundary layer are now formally known. It is noted that the assumptions 
on which this boundary-layer theory is built are consistent provided only that 
6, and 6, do not vanish. Exceptional cases arise only if s is purely imaginary and 
Is1 < 3, when the assumptions break down on certain circles pz = oonst. Con- 
ceivably this may be serious at large times since singularities occur in the s-plane 
on the imaginary axis; on inverting we could get contributions to u2 of order 
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tne iSot  (n > 0).  However, it is believed that this does not happen. In  a closely 
related problem (Roberts & Stewartson 1963) the flow has been studied in 
the neighbourhood of these lines, and it has been shown that the main effect is 
to change the thickness of the layer from O(v4) to O(v f ) .  Adapting the argument 
to the present problem similar results are obtained, and it is found that, in the 
neighbourhood of the singular lines, uZA1 = O(v*), instead of O ( d )  as elsewhere 
in the boundary layer. Further, on computing the contribution from the neigh- 
bourhood of these lines to the flow in the deep interior of the spheroid, we find 
it to be O(v2) as against O(v*) from the rest of the boundary layer. 

Of particular interest is the value of UaA1 just outside the boundary layer, 
i.e. when ( b  -A l )  v4 is large, but ( b  - A,) is small. This is obtained by integrating 
(4.7) with respect to A, from --oo to b and using (4.9). Denoting the value of Uahl 
by U4A1(b,p1, O )  we have 

a(b2 + c2p;)* U4Al(b7  ‘1 

ap, + (b2 + c2p;)4 ap, - (b2 + c2p;)* + __- 
82 61 

(4.10) 

Now let US consider the second part (u3) of the boundary layer due to that part 
of (4.3) independent of 8. Let the Laplace transform of u3 with respect to ot 
be u$. Then at A, = b 

u;Al = 0,  uzLL1 = 0,  u$e = - Qa cos a(1 - ~ $ / w s ,  (4.11) 

and by an analogous argument to that given above the equations governing the 
flow in the boundary layer reduce to 

Integrating (4.12) and (4.13) we have 

where 
w 

6: = -2 (b2+C2p;) 

8: = T(b2+,c2p; )  

va 

w 2ip, a 
va 

(4.16) 
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and 8, and 8, are real and positive when s is real, positive and large. The con- 
sistency of this solution is subject to the same qualifications as (4.10). Of par- 
ticular interest here too is the value of @Al just outside the boundary layer, and 
denoting it by -uzAl(b, p,, 8) we have 

(b2+c2pi)*(1-pi)& 
Qaicosa a 

a(b2+c2p2,)t-uzAl = - 
~ W S  ap, 

5. The tertiary inviscid flow (i) 
The boundary-layer solution obtained in 3 4 shows that there must be a normal 

velocity at the edge of the layer (i.e. as A, + b -  on the inviscid scale) of order 
v* and given by the sum of (4.10) and (4.17). In  turn this must induce a tertiary 
inviscid flow throughout the interior of the spheroid, i.e. a flow governed by 
(2.14) and (2.15) excluding the forcing terms, and satisfying (2.19) with aright- 
hand side effectively equal to the sum of (4.10) and (4.17) (instead of being zero). 
Since (4.10) is dependent on 0 while (4.17) is not, it is convenient to treat their 
contributions separately and in this section we shall consider the consequences 
of (4.10). In  3 6 below we shall consider the consequences of (4.17). 

Denoting the corresponding velocity in the spheroid by up we have, from 
(2.17), that u, can be expressed in terms of a scalar c which satisfies (2.18), 
the forcing term in (2.17) being again set equal to zero. Hence, after stretching 
the z co-ordinate, satisfies Laplace's equation and the appropriate solution 
can be formally written down. Let 

where yuf = a2 + ic2(s + i ) 2 .  (5.2) 

In  terms of p4 and A, the spheroid is given by 

A, = t ( s + i )  b (5.3) 

and on the spheroid p4 = p, = p. The most general acceptable form for c is 

m 

E = (l-~uf)'(Auf +y%P x AnPk( ih4 /y~Pk(~4) ,  (5.4) 
n= 1 

the P, being Legendre polynomials and the A ,  constants to be found. Further, 
the boundary condition associated with (4.10), viz. 

becomes, in terms of 6, 
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at A, = Q(s+i) b. It follows from (4.10) that ii4A\, is an odd function of ,u and 
behaves like ( 1  -p2)* near ,u = f 1. Consequently n is even in (5 .4) ,  and the 
various A ,  are determined from the equation 

where A, = Q(s + i) b and 

From this point on, the determination of V, is in principle straightforward but 
involves the evaluation of complicated inversion and other integrals. However, 
since v is assumed to be small the effect of the tertiary flow may be neglected 
unless the A ,  have poles, qua functions of s, in the half plane 9 ( s )  > 0,  or suffi- 
ciently strong singularities on the imaginary axis of s. Our purpose in the rest 
of this section is to give arguments to exclude such possibilities. 

First we show that A ,  has no singularities in the half plane 9 ( s )  > 0. A sin- 
gularity can arise if either the coefficient of A ,  in (5.6) vanishes or if B, is singular, 
or if (2.18) breaks down. Taking these possibilities in order, the coefficient of A ,  
vanishes if 

( s  - i) bPA($) + 2iy4n(n + 1 )  P,($) = 0 ,  

using the properties of Legendre polynomials and writing 

(5 .8)  

(5 .9 )  $ = i(s + i) b/[4a2 + C~(S + i)2]4. 

Writing s = iu, (5 .8 )  reduces to 

F(u)  = (l-u)$P;($)+(l+u)n(n+l)P,($) = 0 ,  (5.10) 

where $ = - ( 1  + u) b/[4a2- c2( 1 + a)2]&; (5 .11)  

we shall now show that the roots of (5.10) occur a t  real values of u. We observe 
that physically this result is to be expected because it means that the periods of 
free oscillation of the fluid in the spheroidal envelope are real. In  order to 
prove this result, we note that (5.10) is effectively a polynomial of degree n+ 1 
in u and hence it is enough to prove that P(a) has n+ 1 zeros on the real axis 
of u. One such zero is clearly at u = - 1 ,  where $ = 0 .  Further, between u = - 1 
and u = + 1 ,  where 4 = 1 ,  P, has Qn zeros and consequently, from the inter- 
lacing property of the zeros of P, and Pk, F(cr) has Qn - 1 zeros between the first 
positive zero of P,, qua function of $, and u = 1. A similar remark applies to 
- 3 < u < - 1.  Again if Qn is even, F(u) > 0 if u + 1 is small and positive, and 
is negative at the first zero of P, for which u > - 1. Hence F ( u )  vanishes in this 
range too. A similar argument applies if Qn is odd. Counting up we see that there 
are exactly n+ 1 zeros of F ( a )  in - 3 < u < 1 ,  all simple, and leading to finite 
oscillations of the fluid except when they coincide with poles of B,. 

Now consider the singularities of B,. There are two simple poles at  s = 0 
and at  s = i k ,  from (3 .8)  and (4.10). In addition Sl and S, vanish within the range 
- 3i < s < i for any acceptable value of p. In the evaluation of B, we need the 
weighted integral of ii4Al; consequently the associated singularities of B, only 
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occur a t  s = - 3 i  and s = i ,  and will be considered at the same time as the 
singularities of the governing equation (2.18). The poles of B, at s = 0 and s = ik 
can lead to motions which are apparently large as t -+ co if one of the zeros of 
(5.8) occurs at  the same values of s. The second possibility (s = i k )  is unlikely if 
n Q 2 since it implies that two free periods of oscillation of the fluid are equal, but 
we have not been able to rule this out. The first possibility (s = 0 )  is real, and 
there seems little doubt for any n we can choose a value of alb to satisfy (5.8) 
by s = 0; for example, if n = 4 and 

6~ = (J39+ J 1 5 ) b ,  

the left-hand side of (5.8) vanishes at  s = 0. Using the argument above for 
s = i k ,  k = (a2 - b2)/(a2+ b2),  we can say that if a = b it  is most unlikely that 
(5.8) is satisfied by s = 0 for n $: 2. In the case of particular interest therefore, 
when a z b, we conclude that the possibility of satisfying (5.8) a t  s = 0 is not 
likely to be serious except if n = 2. 

Let us consider the case n = 2 in some detail. Here A ,  has a double pole at 
s = ik because the coefficient of A ,  vanishes and because B, has a simple pole 
from (4.10). Using the formula for A in (3.5) 

(5.12) 

(5.13) 

The corresponding value of A ,  is now easily worked out from (5.6) and, reverting 
to the co-ordinates (r ,  0, z),  the corresponding contribution to is 

3rz(s2 + 1 )  B, 
a2( s - i )  + b2( s + i )  

(5.14) 

Let the coefficientofA in (5.13) bex. Theimplication of (5.14) is that the second- 
ary motion described by (3.3), and (3.5) gives rise to a complicated tertiary 
motion of which the second harmonic is of the same form as (3.3) but with a 
double pole at s = i k .  Although formally this means that the tertiary flow 
increases without limit as t-+m it  is to be expected that the double pole arises 
through an error of order x in the position of the simple pole of A in (3.5). To 
see this we note that the contribution from (5.14) to the tertiary flow is ultimately 
dominant and it gives rise via the boundary layer to a similar form to (5.14) in 
the quaternary flow but now with a triple pole at s = i k ,  and so on. Adding up all 
these contributions to 7 which are proportional to rz, qua functions of r and z ,  
their total is 

2Sla2i sin a(s2 + 1) YZ 
ws[a2(s - i) + b2(s + i )  - 3(s2 + 1) x] ’ (5.15) 

Thus the effect of the boundary layer is to shift the pole s = i k  to 

S = i k +  3( 1 - k2)  x +... (k=ag$), 
a2 + b2 
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the neglected terms being o ( d )  and most probablyO(v6) ; see Roberts & Stewart- 
son (1963). Of particular interest is the position of the pole when 

(5.16) 

the second condition means that the departures of the surface from the mean 
sphere, although small, are much larger than the boundary-layer thickness. 

So far as x is concerned it is sufficient to set a = b whence 

where 

and since s 0 

(5.17) 

It follows that x = 6 ' 2  *za (2ia2)* __ (0.195+ 1-976.3), (5.18) 

whence the pole is moved to 

(5.19) 

and, since i t  is in the half plane 9 ( s )  < 0, the associated contribution to the flow 
dies out as t -+ co. A similar result can be expected for all bla. We note that the 
effect of the viscosity on the residue of the pole at s = 0 and therefore also on 
the ultimate motion is small if (5.16) is satisfied, the proportionate changes in 
the amplitude and orientation of the circulation being O[v/w(a - b)2]i .  

It is of speculative interest in connexion with the case R, = 0 to note that 
if we set a = b in (5.15) and use the formula for x in (5.18), then as t + 03 

V" -+ 0.38 - Qrz sin 01 cos (0 - 1.46) + Qr2 cos 01 (Y)+ 
(see (2.13), (2.16): the limit procedures have not been justified). This result 
suggests that for a sphere the secondary circulation is of the same kind as for 
a spheroid but the amplitude is 0[Qa2(wa2/v)*] and the orientation is changed. 

The last cases to be discussed are the behaviour of the solution in the neigh- 
bourhood of s = +. i and - 3i, where the differential equation (2.18) takes on a 
singular form. Although S, vanishes at pa = (b2+c2p2)* when s = i it  follows 
from (4.10) and (5.7) that B, is bounded as s + i for all n. Hence, substituting 
into (5.6) and noting that A, = iy, on So if s = i, it  follows that 

A ,  = O ( S - - i ) * ,  (5.20) 

near s = i. Further the nth harmonic in (5.4) can be written as 

B[(s + i )2  + 411 (s + i) ~ Z A , G , , ~ { $ [ ( S  + i)2 + 41 r2, t ( s  + i )2  z2}, (5.21) 
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where Gn12(a, p) is a homogeneous polynomial of degree i n  in a and ,4 with constant 
coefficients. Hence the contribution to the tertiary flow is O(s -i) as s -+ i, and 
its inverse with respect to s tends to zero as t -+ co. A similar remark applies to 
the neighbourhood of s = - 3i. In  the neighbourhood of s = - i, B, is O(s + i) 
from (4.10), and the coefficient of An in (5.6) is O( 1) since n is even. Consequently 
(5.21) is O ( S + ~ ) ~  near s = - i  and its contribution to the tertiary flow tends to 
zero as t --f m. 

Summarizing we can expect that, of all the components of the secondary flow 
which depend on 8, only the steady component will remain as t --f co, the boundary 
layer serving to damp out the oscillatory terms. 

6. The tertiary inviscid flow (ii) 
In  this section we consider the inviscid flow engendered by (4.17) which is 

independent of 8. We assume that the associated inviscid flow u, is also inde- 
pendent of 8 whence, on taking the Laplace transform with respect to wt, the 
governing equations reduce to 

these equations also follow from (2.12) on assuming that u5 is independent of 
8 and neglecting the initial and forcing terms. Further, on So, 

from (4.17). In  terms of V:, 

so that 

Introduce new co-ordinates p,, A, such that 

where y5 = a2 + &s2c2, So is given by A, = +b5 and, on So, p, = p4 = p1 = p. 
The boundary conditions now reduce to 

on So. The most general appropriate solution for Vg in So is 
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where Cn are constants and, since u : ~  is an even function of p, n also must be 
even. Hence 

(6 .8 )  

The main interest here centres on the behaviour of the solution at  large times, 
contributions to which arise from three sources. To begin with C, will develop 
a simple pole whenever Pk vanishes unless s = 0: the corresponding motion, 
according to (6 .7))  is a feeble oscillation and one can expect to show, using a similar 
argument to that which led to (5.19),  that viscosity damps it out ultimately. 
Further the differential equation is singular at s = & 2i where ibs/2y5 = & 1. 
Since Pk( k 1 )  + 0, the leading terms from this cause must become zero, as 
+ co. Finally, one must consider the case s = 0. When s is very small 

so that, on inverting (6 .7) ,  V t  contains a term which is proportional to t when 
t is large. The implication is that the boundary layer exerts a decisive influence 
on the inviscid flow outside in this instance. 

The reason for the difference between the solution in Q 5 near s = - i and the 
solution in $ 6  near s = 0, although both governing equations are similar and 
singular at these points is two-fold. First (4.10) contains a factor ( s+ i )  while 
(4.17) contains a factor s-l so that the behaviour of V: near s = 0 is bound to be 
more singular than the behaviour of V z  near s = - i. There is, however, a second 
deeper reason. Near s = 0 the governing equation (6 .1)  reduces to 

= 0, = 0, __ 
a2 

(6.10) 

which means that u& is independent of x and therefore must be an even function 
of p. Consequently Vg is an odd function of p, but the boundary condition (6.2) 
requires it to be an even function. This patent contradiction means that a serious 
breakdown in the solution must occur as t + co. From studies of the steady state 
(e.g. Proudman 1956) we know that the boundary layer in such a case exerts 
a decisive influence on the flow outside, adjusting it until the condition that 
u5,, is an odd function of p is satisfied, which is only possible if us,, + 0 at  t -+ 03. 

Hence the initial angular velocity uo = Qrcosa is also damped out by the 
boundary layer. 

On the other hand, near s = - i, while the governing equations (2.17) and (2.18) 
also reduce in part to 

(6.11) 

so that u& is an odd function of p, this condition is actually satisfied by (4.10) 
so that no corresponding difficulties occur. 

2 Fluid Mech. 17 
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7. Brief summary : geophysical application 

fluid in the cavity may be, if 
Our analysis has established that, no matter what the initial motion of the 

(az - b2) o @(a2 - b2) wa2 
, R,Rz= __- 9 R 3 = T  R - -~ '- Qaz V 

are all large, the flow will ultimately (i.e. in a time of order a2/v) be the same. 
It may be described most easily in a frame of reference rotating about the axis 
of precession with the angular velocity Q of precession. The primary flow is 
then merely a solid-body rotation of the fluid and envelope together. Super- 
imposed upon this is a steady flow which, apart from a boundary layer whose 
thickness is nearly everywhere of order (v/o)* within which the fluid adjusts to 
the no-slip conditions at  the interface, is characterized by closed elliptical stream- 
lines and by uniform vorticity 

2(a2 + b2) 
wz(az- b2) 

-- 0 x (a x 0). 

The streamlines lie in planes perpendicular to this, and are similar to the elliptical 
section of the boundary by a plane through the axis of symmetry. In fact, if 
y be a Cartesian co-ordinate drawn along w x a, z along 0 and x drawn to com- 
plete the triad, this flow is given by 

(7.2) 
2Qa2b2sincr. z 0 - _ _  

(a2-b2) ( ' b 2 '  zz)* 
Its greatest magnitude (taken at  the poles) is 

U = 2Qa2b sin ./(uZ - b2) .  (7.3) 

We will now amplify the brief remarks given in the Introduction on the 
geophysical relevance of the present theory to the hydrodynamics of the Earth's 
core. Let us first briefly estimate the parameters Ri. Many calculations have 
been made of the ellipticity E of the equidensity surfaces within the Earth. They 
have been generally based on Clairaut's equation (cf. e.g. Chandrasekhar & 
Roberts 1963), and have led to the conclusion that E decreases monotonically 
from the value of 1/297 for the Earth's surface to a value of approximately 1/470 
at  the centre of the Earth (e.g. Lambert & Darling 1951). In particular, a com- 
putation of the ellipticity of the core has given 8 = 1/390, i.e. 

Now for the luni-solar precession 

ct = 23.452" and 2nlQ = 25,725years, 

thus w / s l  = 9.40 x lo6. 

It follows that R, = 4.82 x 104. 
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The kinematic viscosity of the Earth’s core is notoriously difficult to estimate 
(e.g. Hide & Roberts 1961), and values between 10-3cm2/sec and 10*cm2/sec 
have been offered, of which the latter is certainly an extreme upper limit. Even 
this value, however, implies that both R,R2 and R, exceed unity; in all prob- 
ability, therefore, they do so by large factors. Thus, the basic tenets of the 
analysis presented in the earlier sections are satisfied, and its particular relevance 
to theories of the geomagnetic field can be legitimately examined. 

It is today generally accepted that the source of the geomagnetic field is to be 
found in a self-excited dynamo located deep within the Earth, the ‘moving parts ’ 
being the hydrodynamic motions of the core. Naturally, if a driving mechanism 
were not available, Ohmic dissipation would cause the dynamo to run down in 
an electromagnetic decay time ( N 10,000years). On the other hand, palaeo- 
magnetic studies have established that the magnitude of the geomagnetic field 
has not varied greatly over geological time. Evidently, then, a capital question 
is to determine the nature of the driving mechanism which must be present. In 
an early study, Bullard (1949) singled out thermal convection as the most likely 
cause. He was, however, unable to exclude the possibility that the dynamo is 
precessionally driven. Indeed, the subsequent analysis by Bondi & Lyttleton 
(1953), though inconclusive, drew attention to the singularities of the boundary 
layer at latitudes 30” N. and 30” S. (cf. tj 4 above) as a possible source of insta- 
bilities which would intermittently shed turbulent eddies. These, the authors 
felt, would through their inductive effects contribute to the secular variation of 
the geomagnetic field in these latitudes. They might also explain the observed 
small irregular fluctuations in the Earth’s state of rotation. It is fair, therefore, 
to state that their ideas enhanced, if anything, the interest in the precessional 
effects. However, unsteady motion was invoked by Bondi & Lyttleton to meet 
a situation for which, they maintained, a steady solution did not exist. In our 
model, on the other hand, a steady flow does establish itself, and there seems to 
be no obvious reason why it should be unstable or be associated with the observed 
irregular fluctuations, either in the geomagnetic field or in rotation. 

Bullard called attention to early studies of precessionally driven flows within 
a spheroidal cavity,’and in particular ascribed to Poincark (1910) a theorem that 
‘the ellipticity of the earth is sufficient to ensure that the material of the core 
moves with the rest of the earth like a rigid body in a small motion of precession, 
even in the absence of viscosity’. Again, he comments ‘ I t  has not been proved 
that the motion ... is possible for a precession of finite amplitude (the angle at  
the vertex of the core swept out by the earth’s axis is 47”) ’. It seems to us, how- 
ever, that Poincare’s solution, like ours, depends only on the assumption that 
u and 51 are small; it  does not require that a, too, is small. His solution, like ours, 
consists of a primary solid-body rotation with the mantle upon which a steady 
secondary flow of uniform vorticity is superimposed. (He did not, however, 
demonstrate that this solution is the one realized in practice in the limit vt -+ 00.) 

Bullard did not discuss the secondary flow. It should be observed, however, 
that its magnitude (cf. equation (7.3)) is of the order of 1 cmlsec. The horizontal 
velocities near the surface of the core, as inferred by studies of the westward 
drift, are also of this order of magnitude (or even rather smaller). Thus the 

2-2 
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precessional flow should be quite large enough to make its inductive effects felt; 
assuming an electrical conductivity a of 3 x lO5mho/m, the corresponding mag- 
netic Reynolds number R, is 

R, == ,uOuaU 1.3 x lo4 a 1 (7.8) 

(p0 is the permeability of free space, 47r x lO-7Henry/m). For dynamo action it 
is necessary that R, should, indeed, be large. However, it is also necessary that 
the motions have a sufficiently low degree of symmetry, and it seems to us that, 
in this respect, the motion (7.3) would be incapable of amplifying and main- 
taining a stray magnetic field. 

Finally one further point should be noted. The theory we have described has 
ignored Lorentz forces. This is appropriate when the solution is used to determine 
whether precessional flows can, by themelves, amplify a stray weak magnetic 
field. There is some difficulty, however, in applying it without modification to 
the actual geophysical situation in which strong magnetic fields are present. 
The precessional flows we have described may be thought of as being driven by 
a force per unit mass of approximately wQa, i.e. about 10-7 cm2/sec. The Lorentz 
forces per unit mass B2/,uopa may well be larger; indeed, if we assume in the core 
a geomagnetic field B of only 50 G, their magnitude is cm2/sec. The toroidal 
field is, however, probably considerably in excess of 50G. Further, since the 
lower mantle is appreciably conducting, there will be a magnetic coupling of 
core and mantle; similar order of magnitude estimates may be made, and 
indicate that this effect, is likely to dominate the viscous coupling. 
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